skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, In-Hwan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Changes induced by irradiation with 1.1 MeV protons in the transport properties and deep trap spectra of thick (>80 μm) undoped κ-Ga2O3 layers grown on sapphire are reported. Prior to irradiation, the films had a donor concentration of ∼1015 cm−3, with the two dominant donors having ionization energies of 0.25 and 0.15 eV, respectively. The main electron traps were located at Ec−0.7 eV. Deep acceptor spectra measured by capacitance-voltage profiling under illumination showed optical ionization thresholds near 2, 2.8, and 3.4 eV. The diffusion length of nonequilibrium charge carriers for ɛ-Ga2O3 was 70 ± 5 nm prior to irradiation. After irradiation with 1.1 MeV protons to a fluence of 1014 cm−2, there was total depletion of mobile charge carriers in the top 4.5 μm of the film, close to the estimated proton range. The carrier removal rate was 10–20 cm−1, a factor of 5–10 lower than in β-Ga2O3, while the concentration of deep acceptors in the lower half of the bandgap and the diffusion length showed no significant change. 
    more » « less